Cryptographic Hashes

Yan Huang

Credits: David Evans, CS588

Recap: CPA

5.

. ke=KeyGen(1"). b«{0,1}. Give Enc(k,) to .«

A chooses as many plaintexts as he wants, and
receives the corresponding ciphertexts via Enc(k,).

A picks two plaintexts M, and M, (Picking plaintexts
for which A previously learned ciphertexts is allowed!)
A receives the ciphertext of M, and continues to
have accesses to Enc(k,).

A outputs b’.

A wins if b’=Db.

Recap: CPA

fori=1,...,q, CPA query:

Mg, M; €M m ol =[m,,|

<

¢ < E(k, mi,b)

my, my € 7. |my| = |m,|
<

c « E(k, My)

m’i,O ' m’i,l eM: |m,i,0| - |m,i,1|

¢, « E(k, m';,)

b’ e {0,1}
For all efficient adversary .,

| Prl b=b’] - 1/2 | is "negligible”.

Recap: Message Integrity Game

l. kK &« Gen(1l").

2. A is given polynomial time and an oracle access to
query Mac (k, ¢). Let t,;=Mac(k, m,) and Q={(m,,
t1) s s (Mg, t)}

3. A outputs (m, t).

A wins the game if Vrfy(m, t)=1 and (m,t)¢g Q.

Recap: Message Integrity

(Gen, Mac, Vrfy) --- a message authentication code scheme.

m,e m, ,
t, & Mac(k,m,) t, ,
(m,t)

b 1 |f Vry(km,t)=1 and (m;t) ¢ {(m, t)), .., (m, t,)}
b O otherwise

Def: (Gen, Mac, Vrfy) is a Secure Message Authentication
Code if for all “efficient” _¢:

dv,,..[-C] = Pr[Chal. outputs 1] is "negligible.”

Normal CS Hashing

“dog” 1 “neanderthal”

“horse” —-

O|loo|IN[fojg|bh[WIN|I—~]|O

H (char s[]) = (s[0] — "a’) mod 10

Magic Function 1

* One Way:
— For every integer x, easy to compute f (x)

— Given f (x), hard to find any information about x

e Collision Resistant:

— “Impossible” to find pair (x, y) where x # y and

J@)=f0)

Regular Hash Functions

1. Many-to-one: maps a large number of values
to a small number of hash values

2. Evenly distributed: for typical data sets,
Pr (H(x) = n) = 1/N where N is the number of
hash valuesandn=0.. N— 1.

3. Efficient: H(x) is easy to compute.

How well does
H (char s[]) = (s[0] — ‘a’) mod 10
satisfy these properties?

Cryptographic Hash Functions

Collision resistance (even for malicious adversary):

Preimage resistance: for a uniformly chosen v, it is hard
to find x such that H(x) = v.

Second-preimage resistance: given x, it is hard to find
y # x such that H(y) = H(x).

Collision resistance: it is hard to find any x and y
such that y # x and H(x) = H(y).

Merkle-Damgard Transform

m=(m,, m,, m)

m m, ms
e EINEIN DN e

Compressing by a single bit is as easy (or as hard)

as compressing by an arbitrary amount.

Example Real World Hash Functions

A[BIC[D[E[F[G[R e MD5 is broken

We

|- ¢ SHA-1lis phasing out
el SHA-256
e
0

- e M-D Transform

gt ¢ 256-bit output
AN W
v\\\\\\\ N e 512-bit block size

A|B|C|ID|E|F |[G]|H

One iteration in a SHA-2 family compression function. The blue &J * 64 ro u n d S
components perform the following operations: . .
Ch(E,F.G) = (EA F) ® (-E A G) * a combination of AND,
Ma(A,B,C) = (AAB) @ (AAC) & (BAC) OR, XOR, ADD, RotR,
Yo(A)=(A32)d (A>>13) e (A>>22)
Yi(E)=(E>6)® (E>11)8 (E>>25) ShR

The bitwise rotation uses different constants for SHA-512. The given

numbers are for SHA-256. The red [is addition modulo 232, ° 1 28 b it secu rity

Authentication through Hash and Mac

If (Gen’, Mac’, Vrfy’) is a MAC for fixed length
messages,

* Gen: Gen’
 Mac: t= Mac'(k, H(m))
* Vrfy: outputs 1 if and only if Vrfy'(k, H(m), t) = 1

Other Applications of Hashing

* Fingerprinting
* Authenticated Data Structures

* Colin tossing

@ @

Alice

IOU Request Protocol

m
@@
N
Macy [H(m)]
Bob
Mac [H(m)]

.
(‘ |
i
.b.
Judge
can subpoena for K

Attacking IOU Request Protocol

m,
@@
@ (@
~
~~ Macy [H(m,)]
: Bob
Alice
K

m, Mac [H(m,)]

-

B Bob picks m, and m, such
HER H(m,) = H(m,).

Judge
can subpoena for K

Finding m, and m,,

Bob generates different agreeable m, messages:

I, {Alice | Alice Hacker | Alice P.
Hacker | }, {owe | agree
to pay} Bob{the sum of | the amount
of }{$2 | $2.00 | 2 dollars |

}{by | before}{January 1st | 1
Jan | 1/1 | }{2016 | 2016 AD}.

How many different-text messages are there?

16

Finding m, and m,,

Bob generates 219 different agreeable m, messages:

I,{Alice | Alice Hacker | Alice P.
Hacker | }, {owe | agree
to pay}Bob{the sum of | the amount
of }{$2 quadrillion |
$2000000000000000 ‘ 2 quadrillion
dollars | two quadrillion dollars}
{by | before}{January 1st | 1 Jan |
1/1 | }1{2016 | 2016 AD}.

17

Bob’s Quadrillionaire Plan

» For each message m, ;and m, ;, Bob
computes H(m, ;) and H(m,).

o If H(m, ;) = H(m, ;) for some i and j, Bob
sends Alice m, ,, gets Mac, [H(m, ;)] back.

« Bob sends the judge mz)jand Mac, [H(m, ,)].

Chances of Success

* Assume the Hash function H is good (uniform
randomly distributed outcome)

What is the probability that H(m, ;) = H(m,)

forsomeiand;?

Birthday “Paradox”

What is the probability that two
people in this room have the
same birthday?

Birthday Paradox

Ways to assign k different birthdays without
duplicates:

N =365 *364 * .. *(365—k+1)
= 365! / (365 — k)!

Ways to assign £ different birthdays with
possible duplicates:

D =365 * 365 * ... * 365 = 365*

Birthday “"Paradox”

Assuming real birthdays assigned randomly:

N/D = probability there are no ¢

1 - N/D = probability there is a c

u

u

=1-365!/((365 — k)!(365)F)

D

D

icates

icate

Generalizing Birthdays

P, ky=1— _ "
(n—k)! n*

Given k£ random selections from n possible values,
P(n, k) gives the probability that there is at least 1
duplicate.

Applying to Birthdays

e Forn =365, k=20:
P(365, 20) = .4114
* For n =365, k =40:
P (365, 40) = .8912

Is 128 bits enough for hash output?

* Form=2128 =240 P (2128 240)>1.77 x 10°%°
* Forn=2128 =260, p (2128 260) > 1 95 x 1073
* Forn =218 =25: P (2%%, 2%0) > 0.86

A 10 thousand core machine can brute-force

2% hashes in about 50 days (assuming 10°
hashes per second on each core).

Assumes you hash function is perfect (e.g., MD5 was not broken merely as a
result of bruteforce).

25

A Most Disturbing Program!

From https://freedom-to-tinker.com/blog/felten/report-crypto-2004/
#!1/usr/bin/perl -w
use strict;
use Digest::MD5 qw(md5_hex);

Create a stream of bytes from hex.

my @bytesl = map {chr(hex($_))} gqw(d1l 31 dd 02 c5 eb6 ee c4 69 3d 9a 06 98 af f9 5¢ 2f ca b5 87
12 46 7e ab 40 04 58 3e b8 fb 7f 89 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 71 41 5a 08 51 25 e8 f7
cd ¢9 9f d9 1d bd f2 80 37 3¢ 5b d8 82 3e 31 56 34 8f 5b ae 6d ac d4 36 c9 19 c6 dd 53 e2 b4 87 da
03 fd 02 39 63 06 d2 48 cd a0 e9 9f 33 42 0f 57 7e e8 ce 54 b6 70 80 a8 0d 1e c6 98 21 bc b6 a8 83
93 96 f9 65 2b 6f f7 2a 70);

my @bytes2 = map {chr(hex($_))} gqw(d1l 31 dd 02 c5 eb6 ee c4 69 3d 9a 06 98 af f9 5¢ 2f ca b5 07
12 46 7e ab 40 04 58 3e b8 fb 7f 89 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 f1 41 5a 08 51 25 e8 {7
cd ¢S 9fd9 1d bd 72 80 37 3c 5b d8 82 3e 31 56 34 8f 5b ae 6d ac d4 36 c9 19 c6 dd 53 e2 34 87
da 03 fd 02 39 63 06 d2 48 cd a0 €9 9f 33 42 0f 57 7e €8 ce 54 b6 70 80 28 0d 1e c6 98 21 bc b6 a8
83 93 96 f9 65 ab 6f f7 2a 70);

Print MD5 hashes
print md5_hex(@bytes1), "\n", md5_hex(@bytes2), "\n";

79054025255fb1a26ed4bc422aef54eb4
79054025255fb1a26ed4bc422aef54eb4

