
Cryptographic	Hashes

Yan	Huang

Credits:	David	Evans,	CS588

2

Recap: CPA

1. k←KeyGen(1n). b←{0,1}. Give Enc(k, ·) to A.
2. A chooses as many plaintexts as he wants, and

receives the corresponding ciphertexts via Enc(k, ·).
3. A picks two plaintexts M0 and M1

. (Picking plaintexts
for which A previously learned ciphertexts is allowed!)

4. A receives the ciphertext of Mb, and continues to
have accesses to Enc(k, ·).

5. A outputs b’.

A wins if b’=b.

Recap: CPA

For all efficient adversary A, 
 | Pr[b=b’] - 1/2 | is “negligible”.

Challenger. Adversary  
Ak←K,

b←{0,1}

m0 , m1 ∈ M : |m0| = |m1|

c ← E(k, mb)

b’ ∈ {0,1}

mi,0 , mi,1 ∈ M : |mi,0| = |mi,1|

ci ← E(k, mi,b)

for i=1,…,q, CPA query:

m’i,0 , m’i,1 ∈ M : |m’i,0| = |m’i,1|

c’i ← E(k, m’i,b)

Recap:	Message	Integrity	Game

1. k ← Gen(1n).	
2. A is	given	polynomial	time	and	an	oracle	access	to	

query	Mac(k,·).	Let	ti=Mac(k, mi)	and	Q={(m1,
t1), …, (mq, tq)}.	

3. A outputs	(m,	t).	

A wins	the	game	if	Vrfy(m, t)=1 and	(m,t)∉ Q.

Recap:	Message	Integrity
(Gen,	Mac,	Vrfy)		---	a	message	authentication	code	scheme.				

Def:		(Gen,	Mac,	Vrfy)	is	a	Secure	Message	Authentication	
Code	if	for	all	“efficient”		A: 
	 					AdvMac[A]		=		Pr[Chal.	outputs	1]		is	“negligible.”

Chal. Adversary	
Ak←Gen(1n)

(m,t)

m1	∈	M

t1	←	Mac(k,m1)

b=1				if		Vrfy(k,m,t)	=	1				and		(m,t)		∉		{	(m1,	t1)	,	…	,	(mq,	tq)	}	
b=0			otherwise

b

m2 ,	…,	mq

	t2 ,	…,	tq

6

Normal	CS	Hashing

0
1
2
3
4
5
6
7
8
9

“neanderthal”“dog”

H (char s[])	=	(s[0] – ‘a’) mod 10

“horse”

7

Magic	Function	f

• One	Way:	
– For	every	integer	x,	easy	to	compute	f (x)	
– Given	f (x),	hard	to	find	any	information	about	x	

• Collision	Resistant:	
– “Impossible”	to	find	pair	(x,	y)	where	x ≠ y	and	  

f (x)	=	f (y)

8

Regular	Hash	Functions

1. Many-to-one:	maps	a	large	number	of	values	
to	a	small	number	of	hash	values	

2. Evenly	distributed:	for	typical	data	sets,	 
Pr (H(x) = n) = 1/N where	N is	the	number	of	
hash	values	and	n =	0	..	N – 1.

3. Efficient:	H(x)	is	easy	to	compute.
How	well	does		

H (char s[])	=	(s[0] – ‘a’) mod 10
satisfy	these	properties?

9

Cryptographic	Hash	Functions

Collision	resistance	(even	for	malicious	adversary):	
Preimage	resistance:	for	a	uniformly	chosen	v,	it	is	hard	

to	find	x such	that	H(x) = v.	
Second-preimage	resistance:	given	x,	it	is	hard	to	find				

y ≠ x	such	that	H(y) = H(x).	

Collision	resistance:	it	is	hard	to	find	any	x	and	y
such	that	y ≠ x	and	H(x) = H(y).

Merkle-Damgård	Transform

m1

IV h

m2

h

m3

h H (m)

m=(m1, m2, m3)

Compressing	by	a	single	bit	is	as	easy	(or	as	hard)	
as	compressing	by	an	arbitrary	amount.

Example	Real	World	Hash	Functions

• MD5	is	broken	
• SHA-1	is	phasing	out	
• SHA-256		
• M-D	Transform	
• 256-bit	output	
• 512-bit	block	size	
• 64	rounds	
• a	combination	of	AND,	
OR,	XOR,	ADD,	RotR,	
ShR	

• 128	bit	security

Authentication	through	Hash	and	Mac

If	(Gen’,	Mac’,	Vrfy’)	is	a	MAC	for	fixed	length	
messages,	
• Gen:	Gen’	
• Mac:	t = Mac’(k, H(m))
• Vrfy:	outputs	1	if	and	only	if	Vrfy’(k, H(m), t) = 1

Other	Applications	of	Hashing

• Fingerprinting	
• Authenticated	Data	Structures	
• Coin	tossing

14

IOU	Request	Protocol

Alice
Bob

K

MacK [H(m)]

Judge

m MacK [H(m)]

can	subpoena	for	K

m

15

Attacking	IOU	Request	Protocol

Alice
Bob

K

MacK [H(m1)]

Judge

m2 MacK [H(m1)]

Bob	picks	m1	and	m2	such	
that	H(m1)	=	H(m2).

m1

can	subpoena	for	K

16

Finding	m1	and	m2

Bob	generates	different	agreeable	m1	messages:	

	 I, {	Alice | Alice Hacker | Alice P.
Hacker | Ms. A. Hacker	},	{	owe | agree
to pay	} Bob	{	the sum of | the amount
of	}	{	$2 | $2.00 | 2 dollars | two
dollars	}	{	by | before	}	{	January 1st | 1
Jan | 1/1 | 1-1	}	{	2016 | 2016 AD}.

How	many	different-text	messages	are	there?

17

Bob	generates	210	different	agreeable	m2	messages:	

 
I,	{	Alice | Alice Hacker | Alice P.
Hacker | Ms. A. Hacker	},	{	owe | agree
to pay	}	Bob	{	the sum of | the amount
of	}	{	$2 quadrillion |
$2000000000000000 | 2 quadrillion
dollars | two quadrillion dollars	}	
{	by | before	}	{	January 1st | 1 Jan |
1/1 | 1-1	}	{	2016 | 2016 AD}.

Finding	m1	and	m2

18

Bob’s	Quadrillionaire	Plan

• For	each	message	m1,i	and	m2,i,	Bob	
computes	H(m1,i)	and	H(m2,i).	
• If	H(m1,i) = H(m2,j)	for	some	i	and	j,	Bob	
sends	Alice	m1,i,	gets	MacK [H(m1,i)]	back.	

• Bob	sends	the	judge	m2,j	and	MacK [H(m1,i)].

19

Chances	of	Success

• Assume	the	Hash	function	H	is	good	(uniform	
randomly	distributed	outcome)

What	is	the	probability	that	H(m1,i) = H(m2,j)	
for	some	i	and	j ?

20

Birthday	“Paradox”

	 What	is	the	probability	that	two	
people	in	this	room	have	the	
same	birthday?

21

Birthday	Paradox

Ways	to	assign	k	different	birthdays	without	
duplicates:	

N		=	365	*	364	*	...	*	(365	–	k	+	1)	
	 	=	365!	/	(365	–	k)!	

Ways	to	assign	k	different	birthdays	with	
possible	duplicates:	

D		=	365	*	365	*	...	*	365	=	365k

22

Birthday	“Paradox”

	 Assuming	real	birthdays	assigned	randomly:		
	 N/D	=	probability	there	are	no	duplicates	
	 1	-	N/D	=	probability	there	is	a	duplicate	

	 			 =	1	–	365!	/	((365	–	k)!(365)k)

23

Generalizing	Birthdays

																																				n!
 (n – k)! nk

P(n, k) = 1 –

Given	k	random	selections	from	n	possible	values,	
P(n, k)	gives	the	probability	that	there	is	at	least	1	
duplicate.

24

Applying	to	Birthdays

• For	n	=	365,	k	=	20:	
	 	P(365,	20)	≈	.4114	 	

• For	n	=	365,	k	=	40:			
					P	(365,	40)	≈	.8912

25

Is	128	bits	enough	for	hash	output?

• For	n	=	2128,	k	=	240:		P	(2128,	240)	>	1.77	x	10-15	
• For	n	=	2128,	k	=	260:		P	(2128,	260)	>	1.95	x	10-3	
• For	n	=	2128,	k	=	265:		P	(2128,	260)	>	0.86	

Assumes	you	hash	function	is	perfect	(e.g.,	MD5	was	not	broken	merely	as	a	
result	of	bruteforce).

A	10	thousand	core	machine	can	brute-force	
265	hashes	in	about	50	days	(assuming	109	

hashes	per	second	on	each	core).

26

#!/usr/bin/perl -w
use strict;
use Digest::MD5 qw(md5_hex);

Create a stream of bytes from hex.
my @bytes1 = map {chr(hex($_))} qw(d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c 2f ca b5 87
12 46 7e ab 40 04 58 3e b8 fb 7f 89 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 71 41 5a 08 51 25 e8 f7
cd c9 9f d9 1d bd f2 80 37 3c 5b d8 82 3e 31 56 34 8f 5b ae 6d ac d4 36 c9 19 c6 dd 53 e2 b4 87 da
03 fd 02 39 63 06 d2 48 cd a0 e9 9f 33 42 0f 57 7e e8 ce 54 b6 70 80 a8 0d 1e c6 98 21 bc b6 a8 83
93 96 f9 65 2b 6f f7 2a 70);

my @bytes2 = map {chr(hex($_))} qw(d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c 2f ca b5 07
12 46 7e ab 40 04 58 3e b8 fb 7f 89 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 f1 41 5a 08 51 25 e8 f7
cd c9 9f d9 1d bd 72 80 37 3c 5b d8 82 3e 31 56 34 8f 5b ae 6d ac d4 36 c9 19 c6 dd 53 e2 34 87
da 03 fd 02 39 63 06 d2 48 cd a0 e9 9f 33 42 0f 57 7e e8 ce 54 b6 70 80 28 0d 1e c6 98 21 bc b6 a8
83 93 96 f9 65 ab 6f f7 2a 70);

Print MD5 hashes
print md5_hex(@bytes1), "\n", md5_hex(@bytes2), "\n";

A	Most	Disturbing	Program!

79054025255fb1a26e4bc422aef54eb4	
79054025255fb1a26e4bc422aef54eb4

From	https://freedom-to-tinker.com/blog/felten/report-crypto-2004/

